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2 Abstract

In this paper, we describe a novel method for evaluating groups of voxels at
a time based on their `similarity structure'. This algorithm can be used as a
feature selection algorithm for MVPA-style classi�cation (Norman et al., 2006).
We demonstrate improved performance relative to an ANOVA, and a further
bene�t for the multi-voxel version, using a delayed saccade visual attention and
working memory dataset (DeSimone et al., submitted).

We also describe a novel analysis of a free recall paradigm based on Sahakyan
and Kelley (2002), designed to make use of this similarity structure algorithm
in localizing the `context vector' hypothesized in the `temporal context model'
(Howard and Kahana, 2002). Finally, we describe progress so far on attempts
to predict the degree of behavioral forgetting as a function of context change

3 Introduction

Functional MRI's three-dimensional, millimeter-resolution images provide tens
of thousands of windows to the soul. This is too many, and they are too grimy
for us to meaningfully look through with the human eye. Only by systematically,
algorithmically winnowing the data down to a manageable form can we make
sense of them. A plethora of voxel-by-voxel tests, dimensionality reduction
techniques and clustering tools exist to help us do just that. Building on these
methods, this paper emphasizes the value of searching for isomorphisms between
patterns of activity in the BOLD response and the �ne-grained predictions of
rich psychological models.

4 The similarity structure algorithm

There is good reason to think that the brain processes information by represent-
ing and re-representing it. The multiple retinotopic maps (Engel et al., 1997),
multiple tonotopic maps (Engelien et al., 2002), and multiple somatosensory
and pain maps (Mazzola et al., 2005) all exemplify chains of processing, each
step further emphasizing and de-emphasizing aspects of the world. For instance,
we might talk about the the similarity structure of representations in area MT
(Tootell et al., 1995) collapsing color distinctions and emphasizing depth and
motion distinctions, or vice versa in V4 (Wandell, 2000). MT `cares about' mo-
tion, and V4 `cares about' color - what counts as similar in MT may di�er from
what counts as similar in V4.

How can we formalize what counts as similar for a group of voxels in the
brain? Or, to use the terminology we will adopt: for a given voxelset1 of n

1Importantly, the voxels in a voxelset might have been drawn from a contiguous cluster,

but they might equally have been drawn from locations dispersed throughout the brain. In

the fMRI literature, the set of voxels to which an analysis is con�ned is usually referred to as

a `region of interest' or `volume of interest'. Both these terms at least imply that the regions

so de�ned are contiguous. Instead, we will adopt the term `voxelset' to refer to a single voxel
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voxels drawn individually from the functional volume, how can we quantify how
similar the neural activity pattern at time ti is to the neural activity pattern at
time tj?

Geometrically, a neural activity pattern can be thought of as a point in a
high-dimensional space. Each voxel is a dimension in this space. A sequence of
brain states changing through time traces a trajectory through this space. Sim-
ilar patterns of activity can be visualized as points close together, and distinct
patterns of activity are distant from one another. Activity patterns might be
close together on some dimensions and di�er on others.

A natural next step would be to formalize the notion of similarity between
the pair of activity patterns at timepoints (i.e. `scans' or `TRs') ti and tj in
terms of the Euclidean distance between two points in an n-dimensional space:

di,j =
√∑

n=1

(vn,i − vn,j)2 (1)

where:

di,j is the Euclidean distance between the activity patterns at time-
points ti and t2

vn,i and vn,j are the activity values for voxel n at timepoints i and
j respectively

In the special case where the voxelset only includes a single voxel, the space
is one-dimensional, and the Euclidean distance between a pair of timepoints
boils down to a simple subtraction:

di,j = |vn,i − vn,j | (2)

Of course, distance and similarity have an inverse relationship, and so similar
points will have a small Euclidean distance and distinct points will have a high
Euclidean distance.

We can look at the activity patterns in a voxelset elicited by a series of
events or cognitive states, and compute the Euclidean distances between them.
This complete set of pairwise comparisons, every timepoint compared with ev-
ery other timepoint, will form a symmetrical (timepoints x timepoints) matrix,
where the diagonal comparisons of timepoints with themselves will always have
a distance of zero. We will refer to this distance matrix, computed from the
voxelset data, as the `data distance matrix'. It describes which timepoints' ac-
tivity patterns are similar to each other, and which are distinct - in other words,
it formalizes what that voxelset `cares about'.

or group of voxels that will be included in an analysis. These voxels might have been chosen

based on anatomy, some previous functional statistic or with tarot cards, although this paper

will mostly discuss functionally-de�ned voxelsets.
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If we have a (timepoints x conditions) regressors design matrix, as would
be needed to run a general linear model (Worsley and Friston, 1995) , then
we can construct a `model distance matrix' in the very same way, substituting
`conditions' for `voxels':

di,j =
√∑

c=1

(xc,i − xc,j)2 (3)

where:

di,j is the distance between the design matrix timepoints at ti and
t2

xc,i and xc,j are the regressor values for condition c at timepoints i
and j respectively

Considering this geometrically, we are treating our design matrix as tracing
a trajectory through some c-dimensional condition space, where each dimension
is a condition. In calculating our model distance matrix, we are comparing every
point in the condition space with every other point in the condition space. This
model distance matrix formalizes the similarity structure that we would like to
see re�ected in a voxelset.

We will now have two pairwise distance matrices - one for the data, and one
for the model. They will be the same size (timepoints x timepoints), since they
will each contain the pairwise distances between every timepoint. If we �atten
these matrices into a single long line, then we can simply correlate the values in
the two lines. This is akin to asking whether the similarity structure of the model
is mirrored by the similarity structure of the data. Ideally, timepoints that are
very di�erent (high Euclidean distance) in our model should be very di�erent in
the data, and similar (low Euclidean distance) timepoints in the model should be
similar in the data. This correlation score between the �attened data distance
matrix and the �attened model distance matrix is our index of `goodness' in
a voxelset. Voxelsets with high correlations care about the same things as our
model - that is, they re�ect its similarity structure.

Specifying a distance matrix between every timepoint and every other time-
point scales quadratically with the number of timepoints, but only linearly with
the number of voxels in the voxelset. For computational convenience then, it
makes sense to average timepoints from the same condition together, cancelling
out noise, and drastically reducing the number of computations.

The similarity structure algorithm describes how to quantify the isomor-
phism between what a voxelset cares about and the predictions of a theory or
model. In essence, this de�nes a criterion, or `objective function' by which we
may determine whether a voxelset is `good' or not. In this way, we can search
through the brain, looking for `good' voxelsets, that exhibit the similarity struc-
ture in our model. Or, we could compare multiple models from di�erent theories,
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Figure 1: Two-voxel toy examples to illustrate single- vs multi-voxel feature
selection scenarios. In the �rst case, the conditions are just as discriminable
with a single voxel's values as when using information from both voxels at the
same time. In the second case, the two conditions are not discriminable at all
when viewing the values from voxel 1 in isolation, or when viewing the values
from voxel 2 in isolation. Only when both voxels are considered at the same
time can a decision boundary that splits the conditions be formed. From Haynes
& Rees (2006).

and see which of them is best matched by the voxelset, as a means of evaluating
theories about what that voxelset represents.

We can then conduct such a search through the brain treating each individual
voxel as its own voxelset, applying the similarity structure algorithm to each in
turn. This is the single-voxel, i.e. mass univariate, version of the algorithm,
since it evaluates each voxel in isolation at a time. To create a binary mask
indicating which voxels to include in further analyses, we can set a p-value or
r threshold, or just pick the best n voxels. For simplicity, we will adopt this
latter approach for all single-voxel feature selection from now on.

4.1 Multi-voxel similarity structure

4.2 Why might multivariate feature selection help? Con-

sidering the two-voxel case

Haynes and Rees (2006) discuss how discriminating between conditions in the
most simple two-voxel case might be impossible if those voxels are considered
in isolation. The most illustrative example can be seen in �gure 1 - in this case,
the boundary dividing categories A and B runs such that the values from v1

are completely uninformative about category, as are the values from v2 alone.
However, in concert, the (v1, v2) vector is highly discriminative.

This toy example serves to illustrate how a multi-voxel voxelset might be
treated di�erently from multiple single-voxel voxelsets. The relevance of this
will become more apparent later when discussing classi�cation.
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Figure 2: Glass brain showing an example sphere of radius 4. Some small
amount of stretching may be visible, since the sphere-creating algorithm does
not take inter-slice gaps into account when judging distances between voxels.

4.2.1 Searchlight spheres

Unfortunately, the combinatorics of testing multiple voxels at a time can quickly
become intractable. After all, if we were to decide on a whim to evaluate every
single 10-voxel combination in a 50,000-voxel brain, this would yield

(
10

50000

)
combinations (about 1040) to evaluate.

As a simple and reasonable alternative, Kriegeskorte et al. (2006) proposed
evaluating a sphere's worth of voxels at a time, with each sphere centered on a
di�erent voxel. The radius of the sphere could be large or small (see discussion
below). For a �xed radius of, say, 2, then each voxel would lie at the center of
its own sphere containing roughly 30 voxels, with voxels at the edge of the brain
having truncated spheres. To visualize this, see �gure 2 for a randomly-chosen
example sphere of radius 4).

Obviously, this approach is making assumptions about locality, since only
geographically-proximal voxels are being treated together - there is no scope for
evaluating voxels scattered around the brain at the same time. However, this
can be seen as a boon too, since it dramatically restricts the number of possible
subsets of voxels to consider.

The �nal implementational detail to consider relates to how the searchlight
spheres should be scored in order to create a binary voxelset mask. Running
the multi-voxel similarity structure algorithm produces a performance score
(the correlation between data and model distance matrices) for each search-
light sphere. Three options seem worthy of consideration:

a) Center-voxels only: each voxel is assigned the score for the sphere
of which it is the center. To de�ne a voxelset mask, choose the best
n voxels.

b) Entire spheres: to de�ne a voxelset mask, choose the best m
spheres, and include all of their constituent voxels. Though spheres
may overlap, each voxel is included in the voxelset only once.
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c) Average participation: each voxel participates in multiple spheres.
The score for a voxel is the average of all the spheres' scores in which
it participates. To de�ne a voxelset mask, choose the best n voxels.

In this paper, we consider only the �rst `center-voxels only' option, though
the others would be interesting to try in the future.

4.3 Making use of the voxelsets

Evaluating voxelsets can be an end in and of itself. Localizing the areas that re-
�ect the similarity structure of a model on a brain map can be very informative.
Indeed, sometimes just demonstrating that there is a region in the brain that re-
�ects some similarity structure, irrespective of where it is, can provide evidence
for a theory that posited the existence of such a process or representation.

Alternatively it might be possible to use similarity structure as a `feature se-
lection' algorithm to choose the best voxelsets on which to run some kind of fur-
ther classi�cation or regression analysis. Following Haxby et al. (2001), a grow-
ing number of neuroimaging researchers have argued that multi-voxel methods
such as classi�cation may provide a more sensitive measure of the informational
content of a voxelset than the mass univariate approach (Mitchell et al., 2004;
Kamitani and Tong, 2005; Haynes and Rees, 2005; Norman et al., 2006). Voxels
that might not be signi�cant when tested in isolation with a mass univariate
contrast might still provide information that improves classi�cation performance
when part of a larger aggregate. For instance, Kamitani and Tong (2005) demon-
strated that the line orientation of a grating is classi�able with a linear support
vector machine using only voxels from V1. This is particularly surprising be-
cause the microscopic organization of orientation-selective neurons in V1 cortical
columns is not visible macroscopically with a mass univariate GLM. They argue
that this is possible because tiny orientation-selective biases in individual voxels
become highly informative when aggregated over many such voxels.

Many of these rely on a leave-one-out cross-validation framework, where the
feature selection and classi�er algorithms are trained on all but one run of the
data, and then tested on the remaining run. Each run gets a turn at being
the withheld testing run on one of the iterations in this cross-validation loop.
Though time-consuming, this approach makes good use of the limited data.

Seen in this way, we could use classi�cation performance as a means of
comparing feature selection algorithms. This will be our aim in the next section,
where we benchmark multiple feature selection algorithms on a delayed saccade
visual attention and working memory dataset.

Better still, we could train a classi�er or regression algorithm to make behav-
ioral predictions, based on subject's behavior in one phase of the experiment,
as per Polyn et al. (2005). This will be the aim of the �nal section, where we
de�ne our voxelsets using the similarity structure algorithm, and then attempt
to make predictions about behavior using these voxelsets.
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4.4 The delayed saccade dataset

4.4.1 Methods and analysis path

The primary dataset I will use for benchmarking the similarity structure al-
gorithm was collected by DeSimone et al. (submitted) to examine topographic
maps in frontal and parietal areas using a memory-guided delayed saccade de-
sign (Sereno et al., 1995). The task required subjects to saccade to one of twelve
peripheral locations arranged clockwise around a central �xation point. Each
trial, lasting a total of 5s, consisted of a brief period �xating on the central cross
while a target appeared in one of the twelve clockface positions at approximately
10◦ eccentricity for 500ms. Subjects had to remember this location while mul-
tiple sets of distractors were presented for 3s. The disappearance of the �xation
point cued subjects to saccade to the remembered target location and back to
�xation, in time for the next trial's �xation cross to appear in 1500ms.

Each run began with the 3 o'clock position, and trials proceeded sequentially
anti-clockwise around the clock. A complete cycle around the clock took 60s,
with 8 cycles in a scanning run. The subject was allowed to rest after each of
the 6 runs, but there were no rest trials during scanning runs. The position of
each target was randomly jittered by up to 2.5◦ in each direction.

Three subjects participated in the study. Data were acquired with a 3T
Siemens Allegra head-dedicated MRI scanner using a standard birdcage coil,
using a gradient echo, echo planar sequence with a 128 square matrix, in-plane
resolution of 2x2mm2, 20 axial slices each 2mm thick with a 1mm gap between
slices, and a repetition time of 2s. The acquisition volume was positioned to
cover frontal, parietal and dorsal occipital cortex. A high-resolution anatomical
scan was taken at the end of the session with an MPRAGE sequence of 1mm3

resolution and a 256x256 matrix. An in-plane magnetic �eld map image was
acquired to perform echo planar imaging undistortion.

The functional images were motion-corrected (Cox and Jesmanowicz, 1999)
to the image acquired closest in time to the anatomical scan and undistorted
using the �eld map scan. Linear and quadratic trends within runs were sub-
tracted, and each voxel was z-scored within runs to give it a mean of 0 and
standard deviation of 1, following Polyn et al. (2005).

The simplest way to have characterized the design of this experiment would
have been to assign each timepoint a discrete label from 1�12, referring to
the position on the clockface being saccaded to in that trial. Unfortunately,
because each timepoint's repetition time (TR) was 2s and trials lasted 5s, a
trial consisted of 2.5 timepoints. Sophisticated ways to take these `halfway'
timepoints into account were considered, but for reasons of expediency, they
were instead simply ignored.

In order to account for the haemodynamic lag, the labels in each run were
shifted forward by 3 timepoints, such that each data timepoint now corre-
sponded to the label from 3 timepoints (6s) previously, corresponding roughly
with the peak of most standard haemodynamic response functions, following
Polyn et al. (2005). For reasons that will be discussed further below, it was
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Figure 3: Condition labels for every timepoint in a run, after shifting 3 time-
points along, removal of halfway timepoints, and removal the �rst cycle.

felt that more sophisticated haemodynamic response function convolution tech-
niques would complicate things without any real bene�t.

By shunting the labels along like this, the �rst few timepoints in each run
no longer had a label, and the last few 2 o'clock timepoints in each run were
truncated. This meant that there were fewer timepoints from the 2 o'clock
condition than from the others. Following DeSimone et al. (submitted) , we
re-balanced the conditions by excluding almost all of the �rst cycle of each run,
such that the �rst label in a run was a 2, and the last label in the run was a 1.
Figure 3 makes the end result clear for a single run.

Finally, all of the timepoints from each given condition from a given run were
averaged together. This is not strictly necessary, but cancelled out a great deal
of the noise, making the results much cleaner. This left 1 averaged-timepoint
per condition per run, making 72 in total.

This labels matrix can be re-expressed in terms of the Cartesian coordinates
of the clockface position being saccaded to, with the eccentricities normalized
to lie on the unit circle. Thus 12 o'clock would have coordinates (0,1), and 9
o'clock would have coordinates (-1,0). This is the key step that will allow us to
treat some conditions as more similar to each other than others.

Using tools provided by DeSimone et al. (submitted) and following Sereno et
al. (1995), the data were �rst analyzed using a Fourier decomposition, applied
to each voxel in isolation. A `good' voxel should show a roughly sinusoidal
oscillation at the frequency of the clock cycles (1/60Hz). The greater the power
of that frequency, the better the voxel.

The Fourier decomposition rests on the well-founded assumption that each
voxel has a Gaussian-like tuning curve. That is, a `6 o'clock' voxel with a
Gaussian tuning curve would respond maximally when the subject was saccading
to the 6 o'clock position, respond somewhat when saccading to 5 or 7 o'clock,
only a little when saccading to 4 or 8 o'clock, and so on (see Figure 4 ). This is,
in e�ect, the `model' underlying the Fourier analysis - it looks for voxels with
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Figure 4: Depiction of what a perfect voxel with a Gaussian tuning curve cen-
tered on the 6 o'clock clockface position might look like.

high power at the frequency of the clock cycles in the task, since voxels that
show Gaussian tuning curves for saccade angle will look roughly sinusoidal after
the cyclic sequence of Gaussians have been convolved with a haemodynamic
response function (Cox, unpublished).

In order to establish that the similarity structure algorithm is indeed pro-
ducing sensible results, brain maps produced by the Fourier and single-voxel
similarity structure algorithms were compared. In order to do this, it was nec-
essary to construct a model distance matrix from the Cartesian coordinates
design matrix already described. Thus, for the model, the distance between
timepoint ti and timepoint tj is just the Euclidean distance between the clock
face position being saccaded to at ti and the clock face position being saccaded
to at tj .

We now need a corresponding distance matrix for our actual data, which we
will compare with our model distance matrix. To calculate each distance, the
voxelset's activity patterns at timepoint t1 are compared with the set of values
at tj .

Another way of putting this, most usefully for our purposes, is to consider
that a good voxelset's response will be similar for nearby positions on the clock-
face, and di�erent for distant/opposite positions on the clockface. Its activity
patterns will be similar for 12 and 1 o'clock, but very di�erent for 3 and 9
o'clock, as can be seen in Figure 5 .

As a means of visualizing the similarity structure of the voxelsets in a
more intuitable way than the numbers in the data distance matrices, multi-
dimensional scaling (Shepard, 1980) was used to create two-dimensional plots
depicting which conditions are similar to which (Edelman et al., 1998; O'Toole
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Figure 5: Model distance matrix created from the Cartesian coordinates design
matrix. The red circles highlight examples of very similar pairs of conditions
- 1 o'clock & 12 o'clock, and 1 o'clock & 2 o'clock. The blue circles highlight
examples of very distant conditions - 6 o'clock & 12 o'clock, and 1 o'clock & 7
o'clock.

et al., 2005). Although these previous e�orts have visualized the reduced di-
mensionality space, we are not aware of any e�orts to use the shape of this space
as an objective function for evaluating voxelsets, as described here.

To corroborate the �ndings that each half of the visual �eld is represented
contralaterally, two further model distance matrices were constructed. One only
computed pairwise distances between the conditions from the left half of the
visual �eld (7, 8, 9, 10 and 11 o'clock), while the other only computed pairwise
distances between the conditions on the right half of the visual �eld (1, 2, 3, 4
and 5 o'clock). It was hoped that these two models would pick out contralateral
areas as best re�ecting their respective similarity structures.

Finally, in order to quantify the relative e�cacy of di�erent feature selection
methods, a full-scale cross-validation feature selection and classi�cation analysis
was run. The classi�er was trained on 5 of the 6 runs to discriminate between
the activation patterns from the twelve di�erent clockface position conditions.
A classi�er's guess was considered to be correct if the (x,y) coordinate of its
output was closer to the target clockface position's location than any of the other
11 positions. The Matlab (Natick, MA) Neural Networks Toolbox `trainscg'
backpropagation algorithm was used without a hidden layer to predict real-
valued x and y coordinates.

Since Haxby et al. (2001) simply used a mass univariate omnibus ANOVA
to test whether each voxel's activity varied signi�cantly between conditions, we
included this algorithm as a baseline performance estimate. We expected clas-
si�cation performance using voxelsets selected with this algorithm to be worst
since it did not take into account any of the information about which conditions
were more or less similar to each other, but simply treated all the conditions
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Figure 6: Comparison of similarity structure and Fourier feature selection algo-
rithms on subject 1. Thresholding on the two maps has been arbitrarily chosen
to facilitate comparison. Intraparietal sulcus, frontal eye �elds and dorsolateral
prefrontal cortex regions are picked out by both algorithms.

as distinct groups. For this to work, each timepoint has to be considered as
`belonging' to one condition, and so the 12 binary boxcar condition labels were
used (see Figure 3).

4.4.2 Results and discussion

Previous results, (DeSimone et al., submitted) have shown a clear lateralization
of representation, with each half of the visual �eld being represented by the
contralateral hemisphere in three main areas we can broadly term `intrapari-
etal sulcus' (IPS), `frontal eye �elds' (FEF), and `dorsolateral prefrontal cortex'
(DLPFC).

In order to determine whether the similarity structure algorithm was return-
ing results in line with conventional analyses, we produced thresholded brain
maps using the the similarity structure (see �gure 6 top pane) and standard
Fourier analysis (�gure 6 bottom pane) algorithms. Little e�ort was made to
threshold the two maps in exactly the same way, but it the two appear to be
picking out similar results.

The IPS and FEF regions are clearly visible in Figure 6 (bottom pane),
though the head was tilted during scanning so the bilateral symmetry is not
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visible in a single slice. The dorsolateral prefrontal regions that DeSimone et
al. (submitted) found were also delineated to some degree using the similarity
structure algorithm (also not visible in this slice).

We also ran a single subject in a modi�ed design where the condition order
was completely randomized, in order to facilitate certain GLM contrast analyses
that could not be run on the delayed saccade dataset because of the collinearity
of the regressors. Although we do not report the results here, the single-voxel
GLM and similarity structure algorithms produced similar brain maps.

The low-dimensionality representation of the neural activation patterns in
�gure 7 is clearly isomorphic to the original clockface condition-structure used
to select the voxels. To be interesting, such plots should be generated from the
withheld runs in a cross-validation framework, though this one was not. This
is a proof of concept but the approach could be useful in the future, perhaps
as a means of visualizing the similarity structure for more complex distance
matrices.

This mass univariate omnibus ANOVA provided a baseline against which the
similarity structure algorithm could be evaluated, since the ANOVA did not not
take into account any prior knowledge about the similarity between conditions.
It was, in e�ect, just a simple GLM with 12 boxcar regressors. Figure 9 shows
that the ANOVA drastically under-performs the similarity structure algorithm
when picking voxels. There are improvements to the way this ANOVA anal-
ysis was run that might perhaps bring up its performance, such as adding in
the scanning runs as a random e�ect to remove a possible source of variance.
However, when all other things are kept equal, adding in continuous-valued in-
formation describing the similarity structure between conditions helps, relative
to not using it at all.

Just as di�erent regressor matrices in a GLM will give rise to di�erent
beta weights, creating di�erent model distance matrices will provide di�erent
data/model correlations. The simplest way to illustrate how this might be used
is to test alternative similarity structure models. For instance, DeSimone et
al. (submitted) showed hemispheric lateralization of visual �eld representations,
especially in lower extrastriate areas. In other words, the right hemisphere cares
about the left half of the visual �eld, while the left hemisphere cares about the
right half of the visual �eld. That is, the similarity structure of the left clockface
positions should be preserved more carefully in voxels from the right hemisphere,
and vice versa.

Indeed, as expected, the model distance matrix of the left visual �eld alone
activated primarily the contralateral hemisphere (see �gure 8 left pane), and
vice versa for the right visual �eld. Since this is a radiological view of the brain,
the right hemisphere is actually pictured on the left hand side, and clearly shows
greater correlations in the intraparietal sulcus than the right hemisphere. The
opposite holds more or less true for the right half of the visual �eld. This
lateralization is less clearly visible in the more frontal FEF and DLPFC areas,
however. We will return to this idea of model-testing later, when analyzing the
context dataset.

The single- and multi-voxel versions of the similarity structure algorithm
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Figure 7: The �rst two dimensions of a multidimensional scaling analysis run
on the averaged neural activity patterns from the best 200 voxels chosen by the
similarity structure algorithm.
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Figure 8: Thresholded brain maps produced using the similarity structure for
the left visual �eld conditions only (left side) and right visual �eld conditions
only (right side). Following radiological conventions, left=right. As predicted,
the left visual �eld similarity structure picks out primarily the right hemisphere
(confusingly shown on the left), and and the right visual �eld similarity structure
picks out primarily the left hemisphere (on the right). Note: the two montages
are plotted using slightly di�erent coordinates, because the subject's head is
tilted, making it di�cult to see the e�ect clearly with the same set of coordinates.
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Figure 9: Comparison of: single-voxel ANOVA (blue); single-voxel similarity
structure (red); multi-voxel similarity structure (green) - three subjects. Chance
performance (yellow) is 8%. Unsmoothed data, averaged timepoints (one per
condition per run).

were compared directly on the delayed saccade dataset (see Figure 9). `Per-
formance' here refers to 12-way classi�cation performance, using the cross-
validation generalization framework described above. Figure 9 shows a healthy
improvement when the multi-voxel version of the similarity structure algorithm
is used over the single-voxel version, for all three subjects. All three algorithms
perform above chance (the �at yellow line around 8%), though the ANOVA is
clearly dramatically less e�ective than the similarity structure algorithm.

4.5 Comparison with spatial averaging or smoothing

There are many possible explanations of the �nding that the multi-voxel algo-
rithm performed better than the single-voxel algorithm. It could be that the
multi-voxel algorithm is working better simply because it is averaging over mul-
tiple voxels, cancelling out uncorrelated noise. This would be an unsophisticated
win for multivariate methods, and could be more easily achieved simply by av-
eraging all the values within a sphere together, or smoothing with a Gaussian
kernel. Kriegeskorte et al. (2006) set out to test exactly this, and showed bene-
�ts to using multi-voxel feature selection on unsmoothed data over single-voxel
feature selection with smoothed data, although their results were not unequiv-
ocal.

In order to understand this better, we also experimented with synthetic
data (Kriegeskorte et al., 2006). Our aim was to show that there are cases
where simply smoothing or spatially averaging does not choose voxels as well
as taking multiple voxels into account would. Of course, one can also create
synthetic data where there is no bene�t to taking multiple voxels into account
beyond averaging, and we compared these two cases. Since this work with
synthetic data is only tangentially relevant to the use of richer psychological
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models in fMRI, we do not discuss it further here.
The fairest way to test whether the multi-voxel algorithm is bene�ting solely

from averaging/smoothing would be to create masks using:

1. the single-voxel feature selection algorithm on smoothed or spatially-averaged
data

2. the multi-voxel feature selection algorithm on unsmoothed data

and then compare their cross-validation classi�cation performance on unsmoothed
data. We are in the process of running this analysis.

However, even these results will need careful consideration. The delayed
saccade task elicits activation in large, topographically-organized areas, where
most of the signal appears to exist at a very low spatial frequency. However,
there may be other datasets or other brain areas where the information is rep-
resented at a higher spatial frequency. It may be that averaging will help with
the delayed saccade data, but may impair performance on other datasets. As a
result, we are also working on benchmarking other datasets, such as from the
Experience-Based Cognition (EBC) competition (Schneider et al., 2006).

4.6 Comparison with standard GLM

We have described how a model distance matrix for the similarity structure
algorithm could be produced by coding each condition as an (x,y) coordinate
on the unit circle, and computing their pairwise distances to each other.

More or less the same analysis could be conducted using a standard mass
univariate general linear model (Worsley and Friston, 1995), using a design
matrix consisting of just two regressors, the x and y coordinates. The GLM
predicts each voxel's values as a weighted sum of the regressors in the design
matrix (ignoring for now regressors of no interest such as head motion, linear or
quadratic trends and other artifacts). The amount of variance accounted for in
predicting each voxel's timecourse from the x and y coordinates would be the
goodness value used in selecting voxels.

y′ = Xβ + ε (4)

where:

y′ is the single-voxel timecourse being predicted

X is the (timepoints x conditions) design matrix

β is the vector of beta weights

ε is the residuals vector of variance unaccounted for by the GLM

18



Though the results are not reported here, this has been found to yield a very
similar brain map to that of the single-voxel similarity structure algorithm, since
they are based on the same psychological model, and both deal with single voxels
and multiple conditions at a time.

The primary advantage of the similarity structure algorithm is that it can
be naturally extended to take multiple voxels into account, rather than just a
single voxel at a time. In other words, the similarity structure algorithm takes
into account multiple voxels and multiple conditions.

4.7 Future directions

The results shown in Figure 9 are a promising start, but it may be possible to
bolster these results in the future. We make two suggestions, both of which allow
for the possibility of evaluating non-local and non-spherical voxelsets. Both sug-
gestions are agnostic about the particular multi-voxel objective function used.

A simple but promising alternative to the searchlight sphere approach has
been proposed by Bryan and Haxby (2006). They start with the best voxel, as
evaluated by some single-voxel algorithm. They then run a multi-voxel feature
selection algorithm on every pairwise combination of that voxel with every other
voxel. In so doing, they determine the best voxel to add to create a two-voxel
voxelset. They then exhaustively determine the best voxel to add to create a
three-voxel voxelset, and so on, until adding a voxel causes performance to drop.
This method allows the voxels to be distributed in completely arbitrary fashion.
This should at least match or exceed the performance of a single-voxel approach,
and indeed, Bryan and Haxby (2006) have demonstrated tangible bene�ts over
single-voxel feature selection.

A second future direction would be to consider feature selection as a search
problem. The stepwise approach just described is, in e�ect, a simple search algo-
rithm, though more sophisticated techniques exist, such as genetic algorithms
(Mitchell, 1996) or beam searches (Russell and Norvig, 2002). Indeed, one
could start with a mask de�ned already, either using a single-voxel approach,
the searchlight spheres, or the stepwise approach, and then try adding and
removing single voxels, or combining multiple masks together in a systematic
fashion to dramatically expand the range of voxel subsets being considered. Of
course, this comes at a combinatorial cost, and it lacks the simplifying locality
constraint of the searchlight spheres.

Much of the preceding discussion about feature selection algorithms was mo-
tivated by a desire for new methods that incorporate rich psychological models
when evaluating voxelsets. We can now apply the similarity structure now to
a new domain, where a rich theory exists that has yet to be addressed with
neuroimaging.
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5 Temporal context model analyses

The �nal set of analyses center around a memory-related dataset. This paradigm
builds on the rich episodic memory literature, concerned with the storage and
retrieval of memories of events occurring at a speci�c place and time. We create
an objective function based on the predictions of a prominent model of episodic
memory, and attempt to use the voxelsets so de�ned to track changes in subjects'
internal context as a predictor of forgetting.

5.1 Background

5.1.1 The temporal context model

Howard and Kahana (2002)'s `temporal context model' (TCM) of episodic mem-
ory provides the underlying framework for the experiment. Their theory builds
on an old idea, that the context we are in a�ects the way we remember things
(Estes, 1955; Godden and Baddeley, 1975; Mensink and Raaijmakers, 1989).
`Context' is used here in a broad technical sense as an amalgam of the sub-
ject's external physical environment as well as a plethora of internal mental
and physiological variables, such as one's mood, current activity, or background
thoughts.

TCM considers there to be two components to an episodic memory:

a) The primary episodic content of the memory, which might com-
prise any kind of occurrence speci�c in place and time

b) A snapshot of the context state at the moment of encoding

Following a standard practice in the memory literature, we can treat any
neural representation as a vector - so the episodic content of a memory is a
vector, and the context snapshot is a vector too. Simplifying considerably, we
can think of the encoding of an episodic memory as storing the combined content
and context-snapshot vectors. Correspondingly, we can think of retrieval as the
business of returning the stored vectors that somehow match a partial or noisy
cue vector.

TCM considers the context vector to change from moment to moment. Mov-
ing to a new environment produces a large and abrupt change. A late-morning
hunger that burgeons over the course of an experiment drives the context to
change more gradually. The many, many internal and external variables that
make up our mental state could each be conceptualized as dimensions of the
context vector. Context, viewed in this way, has a somewhat Heraclitan feel to
it.

TCM makes one further, vital supposition - the retrieval of an episodic mem-
ory actually activates, or `reinstates', its context vector payload, making that
past context current again. By rewinding our brains a little to the way they were
when we �rst encoded the memory, we make it easier to retrieve other memories
that contain similar context vectors. Concretely, this means that retrieving a

20



memory makes it easier to recall other memories encoded at around the same
time, in the same place, or under the same circumstances. This `lag recency'
e�ect has been clearly demonstrated in free recall (Kahana, 1996). Having re-
called the item from timepoint ti, subjects are much more likely to next recall
the item from timepoint ti+1 or possibly ti−1.

5.1.2 Context and forgetting

Sahakyan and Kelley (2002) ran an elegant between-subjects behavioral study
using a simple manipulation. Subjects were presented with a list of words, then
performed a task, then saw more words, and then freely recalled all of the words
they'd seen. The task was manipulated in one of two ways:

1. during the invisibility task, subjects had to imagine what they would do if
they were invisible for a day, without considering the implications of their
actions

2. during the waiting task, subjects simply had to wait for a period of the
same duration

The invisibility condition was deliberately designed to disrupt the subjects'
mental context. Intuitively, the idea is that the imagining of salacious, mur-
derous, voyeuristic, mischievous or other vividly evocative acts would banish all
thoughts of the prior list of words. The rate of change of mental context would
be rapid during this invisibility task, especially relative to the more pedestrian
foot-tapping and thumb-twiddling going on during the `waiting' control task.

Sahakyan and Kelley (2002) showed clearly that subjects who performed
the invisibility task in between lists remembered the second list better and
the �rst list worse than subjects who had simply waited between lists. This
�nding �t neatly within the Howard and Kahana (2002) temporal context model
framework. After all, if every new episodic memory is tagged with the context
vector present at the moment of encoding, then two episodic memories laid down
a minute or so apart will share similar context vectors, and the retrieval of one
should facilitate retrieval of the other . . . unless something had occurred in
that short interval that produced an abrupt change in context. In this case, the
two memories' context vectors would bear considerably less similarity to each
other, and retrieval of one would hardly facilitate retrieval of the other.

In the case of the Sahakyan and Kelley (2002) experiment, the context when
free recall began would be most similar to the context present at the end of the
second list, moments before. Thus, retrieval of the second list should be good.
Retrieval of the �rst list would be substantially a�ected by the interval between
the two lists - if we imagine that the invisibility task caused a considerable
change in context, then retrieval of the second list context will barely facilitate
retrieval of the �rst list. This would explain why performing the invisibility task
causes impaired performance on the �rst list.

Sahakyan and Kelley (2002) went one step further, in a second experiment.
They showed that simply by asking subjects to think back to the goings-on at
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the beginning of the experiment, they were able to neutralize the forgetting
e�ect resulting from performance of the invisibility task. That is, deliberate
reinstatement of the context from the �rst list facilitated recall of that list,
allowing subjects to jump across the cross-list context chasm created by the
invisibility task. This second experiment lent considerable support to the TCM
model, though it is the �rst experiment that we sought to replicate.

5.2 The temporal context dataset

In the following analyses, we will aim to de�ne a voxelset whose rate of change
between lists is greater when subjects perform tasks that should greatly disrupt
their context than when they perform tasks that should barely disrupt their
context. Moreover, we hope that this rate of change will be directly predictive
of the degree of behavioral forgetting of the �rst list.

5.2.1 Methods

Following a series of behavioral pilot studies, we alighted on a modi�ed version
of Sahakyan & Kelley's design that could be run within-subject, in part because
of the greater di�culty and expense involved in scanning subjects with fMRI,
but also because good cross-subject MVPA methods have yet to be developed.

In order to �t as many runs into a single scanning session as possible, items
were presented faster, the task durations and free recall periods were shorter and
the entire design was quickened wherever possible, providing 8 high-disruption
and 8 low-disruption runs per subject. Only three subjects' data have been
collected so far using this pilot design. Each run consists of a 15-second initial
blank period while the scanner settles, 8 seconds of simple arithmetic tasks, 8
concrete, imageable words, each presented for 2 seconds, 40 seconds of task, 8
more words, 8 seconds of arithmetic, and then a 40-second free recall period.
At the end of 16 runs, a �nal 3-minute free recall run for the entire experiment
was included, though it won't be analyzed here.

For the low-disruption task, subjects �xated on a central �xation cross, and
were asked to count the number of times it changed luminance. Subjects were
not asked to report this number. The high disruption task involved short imag-
ination tasks, such as imagining being invisible for a day.

A second set of modi�cations related to a possible confound in the origi-
nal Sahakyan & Kelley design. In their design, each item was presented for 5
seconds, with no encoding task being performed, so it seems at least possible
that subjects were rehearsing items they had seen so far as they went along.
Moreover, it seems likely that subjects in the waiting condition spent some
of that time rehearsing the �rst list. This alone could explain their improved
performance on that list. It is, of course, also possible that subjects in the invis-
ibility condition were rehearsing the �rst list too, since they were not required
to talk out loud about their imaginings. Our concern was that greater rehearsal
in the waiting condition could account for improved performance on list 1 in
the waiting condition, rather than changes in temporal context. This is why
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our low disruption task still required subjects to pay attention to the changing
luminance of the �xation cross, a simple but engaging task that should make
it harder to rehearse. We also reduced the item presentation time to just 2
seconds, and asked subjects to picture each item in isolation to minimize elab-
orative encoding of multiple items at a time, to minimize rehearsal during the
lists.

Our aim was to see whether we could look at the timepoints from just before
the task period, and from just after, and measure the change in brain state
between them. We hoped that the magnitude of this neural change, measured
as the Euclidean distance between the `before' and `after' activity patterns,
would predict the degree of disruption from the task, and therefore, the degree
of forgetting shown behaviorally.

The original block design matrix was convolved with a haemodynamic re-
sponse function (Cox, unpublished) (which e�ectively shifts each of the condi-
tion labels three timepoints to the right), then renormalized so that the values
ranged between 0 and 1, and �nally thresholded at the 0.8 level to binarize the
condition values again.

None of the timepoints used to calculate the magnitude of neural change
incorporated any of the timepoints in which the disruption task was being per-
formed. Further, we were careful to ensure that none of the timepoints from
directly after the task were included either, lest the sluggish haemodynamic re-
sponse to the task leak into the timepoints used for the post-task snapshot. To
visualize which timepoints were included for the pre-task and post-task snap-
shots, see Figure 10c. The unconvolved task block (Figure 10a, middle row)
�nishes on timepoint 40, and the �rst timepoint to be used as part of the post-
task snapshot (Figure 10c, bottom row) is timepoint 46. The three pre-task
timepoints in Figure 10c were averaged together to create the pre-task snap-
shot, as were the three post-task snapshot timepoints. The scalar magnitude of
neural change was then calculated as the Euclidean distance between the aver-
age of the three pre-task activity patterns and the average of the three post-task
activity patterns.

The behavioral forgetting e�ect for each run was computed as per the fol-
lowing equation:

fr = (nr,2 − nr,1) (5)

where:

fr is the behavioral forgetting e�ect measure for run r, for a single
subject. A higher f means that list 2 is being remembered better
than list 1 in that run, as we hope to see for the high disruption
runs.

r is the index of the run (numbered from 1�16)

nr,1 is the number of items remembered in the rth run from the �rst
list
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Figure 10: Timepoints from list and task for a single run. Plot (a) shows the
original, unconvolved design matrix, with the list1, task and list2 timepoints in
red. Plot (b) shows the design matrix after being convolved with a haemody-
namic response function, renormalized to a 0-1 range, and thresholded at 0.8.
Plot (c) shows just the timepoints for list1 and list2 that were averaged together
to create the pre-task and post-task snapshots. Note: the other conditions that
are not shown are blank periods, instructions, recall, arithmetic etc.
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Figure 11: a) Model distance matrix for low vs high disruption task b) Model
distance matrix for behavioral forgetting e�ect. Both �gures are drawn from
subject 1 and di�er according to the counterbalancing of the task conditions
across subjects. As always, higher values mean greater distances.

nr,2 is the number of items remembered in the rth run from the
second list

Other ways of quantifying the forgetting e�ect could be considered in the
future.

Following Sahakyan & Kelley, we had expected that there would be a greater
behavioral forgetting e�ect in the runs where subjects performed the more dis-
ruptive task. We hypothesized that this forgetting might be caused by greater
changes in context when performing the imaginative task, thus making the �rst-
list items less readily retrieved using a second-list context cue. A proximal and
less ambitious goal would be to �nd a voxelset whose magnitude change over
the course of the task interval is predictive of which task is being performed.
Our ultimate aim is to �nd a voxelset whose magnitude of change during the
task interval is predictive of the behavioral forgetting e�ect.

We can redescribe our hypothesis in terms of a model distance matrix, which
we can then use to evaluate voxelsets. In this case, we have two model distance
matrices we can use - one for high vs low disruption task, and one based on the
degree of behavioral forgetting, where each run has been collapsed down to a
single high/low disruption or fr behavioral forgetting value. The timecourses
for the two models can be seen in �gure 12, from which the corresponding model
distance matrices will be produced (e.g. �gure 11 for subject 1). Unfortunately,
complicated distance matrices such as these are di�cult to interpret visually.

5.2.2 Results

Though it is hard to see from Figure 12, subjects remembered more words from
the second list than the �rst list when the task performed was more disrup-
tive (see Figure 13). This is the behavioral e�ect that was sought, where the
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Figure 12: Low vs high disruptiveness of task and degree of behavioral forgetting
for each run, for all three subjects.

more disruptive (imagination) task caused improved recall of the second list and
worsened recall of the �rst list than the less disruptive (luminance cross) task.
However, the within-subjects e�ect is not very strong.

Figure 13 shows performance at predicting whether a given run contained a
high or low disruption task, and the behavioral forgetting e�ect for that run.
It appears then from these preliminary analyses that we can predict which task
was being performed quite well on two of the three subjects (see �gure 13a),
but we cannot yet predict the degree of behavioral forgetting (see �gure 13b)
reliably.

We have not yet thoroughly investigated where in the brain voxels are being
drawn from.

5.2.3 Discussion

There are many possible explanations for the failure to predict behavior. Of
course, it could be that the basic TCM conception of context, at least as oper-
ationalized here, needs re-working. At this stage, that would be a prematurely
strong conclusion. A more likely showstopper is simply that fMRI technology is
poorly-suited or inadequate for the analyses attempted. This could be because
higher spatial resolution and an improved signal-to-noise ratio is necessary to
distinguish tiny variations in the context vector over the course of a 40-second
task. It could even be that the blood-based BOLD response is a poor proxy
measure for stable but subtly-varying patterns of neural activity like the context
vector.

Before sinking into this kind of fatalism, it is worth noting that there are a
variety of more addressable issues that might be a�ecting the results.

The well-known issue of low-frequency artifacts in fMRI signal poses a par-
ticularly awkward dilemma. This `drift' is often dealt with by looking for and
removing linear and quadratic trends within runs, as an early preprocessing
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Figure 13: Left (a): correlation (r) when predicting high vs low disruption tasks.
Right (b): correlation (r) when predicting the degree of behavioral forgetting .
In both cases, the values shown are the r values for a given subject, averaged
over all 16 runs. The performances are for cross-validation generalization for
all 3 subjects, using 200 voxels chosen using the multi-voxel similarity structure
algorithm.

step. We have deliberately avoided removing such trends, to avoid acciden-
tally subtracting away the very e�ect being sought. In order to visualize the
timecourses and see how much of an issue this is, Figure 14 shows the mean
brain-wide activity for both the low- and high-disruption runs for all three sub-
jects. As a �rst pass check, these �gures provide reassurance that there are no
obvious global trends a�ecting the runs. More work is needed to con�rm this
in a more careful way, and especially to consider the possibility of artifactual
trends on an individual voxel level.

It is noticeable that each run starts with an abnormally high level of activity
as the scanner restarts, and there is another period of increased activity just
before free recall. These periods coincide with the arithmetic distractors, which
are both engaging and involve multiple choice key-presses. These �gures use the
entire brain as a voxelset, and only provide information about mean activity,
and tell us very little about changes in the �ne-grained patterns so we will not
consider them any further.

In its current form, the experimental design for the context experiment had
multiple constraints:

• to maximize the amount of context disruption in the high disruption task,
minimize it in the low disruption task, and in general, maximize the dis-
crepancy in forgetting between the two conditions

• minimize the opportunities for rehearsing previous items

• make the duration of the lists long enough to allow the haemodynamic lag
from prior timepoints to subside
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Figure 14: Timecourses showing the mean brain-wide activity over the course
of a run. Each graph depicts a single subject. The green line shows this brain-
wide activity averaged over the low-disruption runs, and the magenta line shows
this brain-wide activity averaged over the high-disruption runs. The red lines
pick out the timepoints towards the end of the two lists used across which the
context change is being measured. The blue line picks out the task timepoints,
and the yellow line picks out the free recall timepoints.

• provide as many observations of between-list context change in both con-
ditions as possible

It seems likely that these constraints might be further optimized in a re-
vised design. For instance, it is possible that other tasks might be found that
cause either a much smaller or much greater degree of context change. Two
other tasks, involving arithmetic problems and stimulating visual images were
included in behavioral pilots, but did not merit inclusion. Adding further runs
would lengthen the experiment (currently lasting 42 minutes without rest pe-
riods), at the risk of tiring subjects, but would provide more observations of
between-list context changes. Unfortunately, concatenating multiple scan ses-
sions from the same subject would introduce considerable complication to the
model.

One potential �aw in the existing data relates to the stimuli. The words
presented were drawn from the Toronto Noun Pool (Thorndike and Lorge, 1944)
chosen for their imageability, concreteness and simple phonology. However, no
e�ort was made to exclude semantically-related or similar-sounding words from
the same list. As a result, many of the lists contained words with pre-existing
associations. These sets of words tended to be recalled better, adding a large
source of variance to the behavioral data that is unexplained by the simpli�ed
context model being used. The easiest solution would be to exclude related
items when constructing future lists to maximize the proportion of variance in
the behavioral data accounted for by temporal context model.

There is a more sophisticated alternative. In our characterization of the
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TCM, we have only considered the rate at which the context vector changes
from moment to moment. Drawing on geometric intuitions, the context vector
charts a trajectory over a period of time through high-dimensional `context
space', where each point represents the context state at a given moment. The
rate of context change is then just the distance travelled through this context
space, divided by the time taken. In the full TCM account, the direction taken
by the context vector is a fully described as a function of the stimuli being
encoded. In a richer model, we might incorporate semantic information about
the individual words being presented (Howard et al., in press), which would
make extremely precise predictions about the exact trajectory that the context
vector should trace. These extra constraints might help de�ne the voxelset more
precisely.

There is of course room to question the entire premise of the experiment.
In e�ect, we have described a design for localizing (or de�ning a voxelset that
contains) the context vector. Prefrontal and entorhinal cortical areas seemed
likely substrates for the context vector. Both receive projections from all over
the brain, allowing them to incorporate a diverse range of information about
external and internal state. There is neurophysiological evidence (Howard et al.,
2005; Rougier et al., 2005) indicating that both areas may contain specialized
cytoarchitectural and neuronal machinery for supporting persistent maintenance
of activation patterns, such as for working memory. Such mechanisms might be
useful for maintaining a stable context vector, parts of which can be selectively
updated in the face of external or internal changes of state. In other words, the
context vector has to be able to `hover' more or less stationary in context space,
but also drift in a speci�ed direction and rate as a function of change in mental
state. Norman et al. (in press) speculate that the short term memory bu�er
might actually serve quite well as the context vector, since it changes over time
in exactly the way required by TCM. This parsimonious proposal would �t with
the constraints described, and help a great deal in concretizing an otherwise
purely theoretical construct.

A quite alternative conception of the context vector would banish any such
notion of a localized, constantly-updated executive summary of the current men-
tal state. Instead, one could view the entire brain itself as the context vector.
After all, the entire brain is stable, but selectively incorporates and is driven
by the diverse range of internal and external variables relevant to the context
vector.

Despite the failure to predict the degree of behavioral forgetting from context
change, prediction of the binary high/low disruption condition appears to be
robust in 2 of the 3 subjects. This raises questions of its own, and deserves a
note of caution. We describe how the timepoints at the end of the lists were
chosen in order to minimize the possibility that the slow ramping down of the
haemodynamic response function has smeared information from the task period
into the timepoints at the end of the second list. This remains a possibility, since
the haemodynamic response function model is just a model, and has been shown
to di�er from region to region. Aside from that, there are other extraneous
factors that might be helping with this prediction. For instance, it may be
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that subjects �nd the imagination task more arousing, and that these global
physiological changes appear as a change in context, though an argument could
be made that such physiological changes are context changes. Less interestingly,
it could be that one of the tasks elicits greater head motion than the other, which
could look like a brain-wide drift, though the head motion parameters estimated
by the volume registration do not support this hypothesis,

In the future, we hope to enrich the model used even further. It might
be possible to de�ne a voxelset objective function that takes the free recall
data into account in the following way. TCM proposes that the reinstatement
of prior context during recall occurs automatically as a product of retrieving
memories, and in so doing, alters the cues used in future retrieval. Sahakyan &
Kelley demonstrated this behaviorally with their `think back to the beginning
of the experiment' reinstatement manipulation. Although our design does not
incorporate any such instructions, we might expect to see such reinstatement
evidence by the changes in context state during the �nal free recall. Indeed, this
would be a very natural extension of the Polyn et al. (2005) design - where they
tracked the dynamics of free recall using reinstatement of semantic category,
we could track the dynamics of free recall using encoding periods. Where they
showed that the brain resembles its `celebrity face' encoding state just before
recalling celebrity faces, we might hope that the brain will resemble its `�rst list
of run 5' encoding state just before recalling a slew of items from the �rst list
of run 5.

6 Conclusion

We have provided evidence that by taking multiple voxels and multiple con-
ditions into account at once, the similarity structure algorithm may provide a
more sensitive measure of a model than the mass univariate GLM. We have
shown how to frame existing models in terms of their similarity structure, and
attempted to introduce a novel paradigm that attempts to forge closer ties be-
tween theory, neural activity patterns and behavior.
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